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Basic Solar Positional Astronomy 
Part 1: Essential Parameters and the Equation of Time 

KEVIN KARNEY

The history of astronomy and timekeeping goes 
back many millennia. The terms used reflect this 
long history - and can be confusing to the non-

astronomer. The author certainly became en-mired in 
this confusion – and this paper largely reflects how he 
sorted it out in his own mind. This paper hopes to chart 
some clarification.
The essential solar parameters needed by the gnomonist 
are:
•	 Right Ascension and Declination of the Sun – both 

Mean & True,
•	 Equation of Time, See Note 1

•	 Altitude and Azimuth of the Sun,
•	 Time of Sunrise & Sunset.
Part 1 of the Series will define the basic astronomical 
terms that are needed, how Coordinated Universal Time 
& Greenwich Mean Sidereal Time are calculated and 
charts the route needed to calculate the Equation of 
Time.
Part 2 will detail a method that can be used to calcu-
late the Right Ascension and Declination of the Sun and 
the other parameters above. The classical astronomical 
method based on Kepler’s single body approach will 
be used. This approach is satisfying since, with only a 
few basic astronomical parameters, one may derive the 
parameters listed above with far greater accuracy than 
is generally required for the most sophisticated sundial 
design.
Part 3 presents a little Fourier theory and some simple 
formulae - derived by Fourier analysis - that allow rapid 
and accurate calculation of the Equation of Time, Dec-
lination and Right Ascension, for those who do not want 
to bother with the complete calculations

History
We will skip lightly over those thousands of years, when 
Unequal or Seasonal hours were in use. When Scientific 
or Common hours were introduced by the Arabs in late 
mediaeval times, time was told by the Solar Time, now 
called Local Apparent Time. Noon was when the sun 
was at its zenith. The vast majority of sundials still tell 
Common hours.
However, around the Enlightenment, with ever increas-
ing international maritime trade, the navigators’ need 
for accurate longitude determination spurred the need 
for clocks that ticked uniformly with the rotation of the 
Earth around the Equator. Such clocks tell Mean Time. 
However, the Sun moves around the Ecliptic at 23° to 
the equator and its elliptical orbit means that it does not 

appear to move uniformly. So there is an imaginary Sun 
- the Mean Sun,- moving uniformly around the Equator 
which takes the place of the real Sun and tells such time. 
One cannot see an imaginary sun. But, since the Stars 
do appear to move uniformly around the Equator, they 
are used to measure Sidereal Time. This, in turn, with a 
suitable conversion, is used to determine accurate Mean 
Time. 
The discrepancy between Mean and Solar Time is 
called the Equation of Time. Ancient Greek astrono-
mers understood this discrepancy and, around 150 AD, 
Claudius Ptolemy gave a succinct description of the ge-
ometries that give rise to this non-uniformity and meth-
ods with which to calculate it. It was not until the time 
of Kepler in 1621 that the Earth’s elliptical orbit was 
fully understood and some years later, Newton showed 
that Kepler’s theories could be explained by his Laws 
of Gravity.
Until the arrival of the telegraph - there was little option 
but to set one’s clock by a sundial, albeit corrected, if 
needed, for the Equation of Time. It was not until the 
late 19th century, the introduction of the telegraph and 
the demands of the railway companies allowed cross-
country dissemination of accurate mean time, deter-
mined by astronomers. Thus, bit-by-bit, Local Solar 
Time was gradually displaced by Local Mean Time 
and thereafter by National Mean Time. GMT was intro-
duced in 1880 in the UK. The  changes wrought by the 
subsequent conversion of GMT to Universal Coordinat-
ed Time (UTC) and the introduction of Atomic Time are 
of irrelevant magnitude to the gnomonist.

Background and Approach Taken
The elliptical nature of the solar orbit gives rise to one 
difference between Solar Time and Mean Time - which 
is approximately sinusoidal with a yearly period, phased 
with perihelion in January (when the Sun is closest to 
the Earth) and with magnitude of some 7.4 minutes. 
Calculating this difference is a problem of dynamics.
The 23.4° obliquity between the Ecliptic and the Equa-
tor gives rise to a second difference - which is somewhat 
sinusoidal with a six-monthly period, phased with the 
Vernal Equinox in March and with magnitude of some 
9.9 minutes. Calculating this difference is a problem of 
spherical trigonometry.
The fact that most of us do not live on our Time Zone 
meridian (plus the introduction of Summer or Daylight 
Saving time) provides the third difference between So-
lar Time and that told by our watches. This correction 
involves a simple arithmetic calculation.
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Astronomical Nomenclature & Definitions
Since the Stars appear to rotate around the Earth with 
exemplary uniformity. See Note  2 24 hours of time equates 
to 360° of rotation. Hours and Degrees can be used in-
terchangeably with a conversion factor of 15. 
Traditionally, some parameters (e.g. Right Ascension) 
are quoted in hrs/mins/secs) and some parameters (e.g. 
Hour Angles) are quoted from -180° to +180°. 
In all the figures and calculations below, parameters are 
in Degrees +ve West to East. This ensures a consistent 
arithmetic and the avoidance of sign errors. This is the 
international convention, though not always used in 
gnomonics, e.g. in the BSS Sundial Glossary Ref. 1.  Oth-
erwise, Glossary symbols are used throughout. A sum-
mary of the abbreviations and their translation is given 
in Table 1 towards the end of text. Definitions below are 
given on indented paragraphs.

The calculation of the Sun’s Altitude and Azimuth for 
any time/date and location is once again a problem of 
spherical trigonometry.
The traditional geocentric view is used - the Sun travel-
ling around the Earth. While one ‘knows’ that the Earth 
revolves around the Sun, it is common to refer to the 
converse. It is only a matter of one’s frame of reference. 
It makes no calculational difference when considering 
just the Sun & Earth. The Earth’s longitude with respect 
to the Sun is just 180° difference from the Sun’s lon-
gitude with respect to the Earth. On the other hand, a 
heliocentric view makes it much easier to explain the 
movement of the Planets in relation to the Earth.
Since this paper is meant to present the basics, it makes 
certain simplifications to definitions and equations con-
sistent with the provision of results at levels of accuracy 
that are more than sufficient for the needs of the gno-
monist. Pedants should read the notes at the end where 
I have tried to be more precise. 

The figures are correctly calculated for a given place, 
viz Athens - Time Zone 2 and for a given date/time - 
2nd February 2013 at 11:30 a.m. local civil time. See Note  3 

The Celestial Sphere
It has been practice throughout the ages to place the 
Earth at the centre of the Celestial Sphere. Fig. 1 shows 
the Celestial Sphere viewed from the medieval Empy-
rean - the place outside the Stars - where God is.

The Celestial Sphere is an imaginary sphere of ar-
bitrarily large radius, concentric with the Earth and 
rotating upon the same axis. All objects in the sky 
can be thought of as projected upon the celestial 
sphere. The celestial equator and the celestial poles 
are the outward projections of the Earth’s equator 
and poles.

The Ecliptic at 23.4° from the Celestial equator is the 
path around which the Sun appears to move. 
An essential point on the Celestial Sphere is one of the 
two intersections of the Celestial Equator and the Eclip-
tic. The point chosen is the point when the Sun crosses 
the celestial equator during the northern hemisphere 
spring and is called the Vernal Equinox. Somewhat con-
fusingly, it is also called the First Point of Aries. These 
terms are used more-or-less interchangeably. Strictly 
speaking, the First Point of Aries is a direction in the 
sky, while the Vernal Equinox is a moment of time. The 
First Point of Aries is the prime origin for all measure-
ments made along the Celestial Equator and the Eclip-
tic. Confusingly, the First Point of Aries is no longer 
in the astronomical Constellation of Aries. It was - in 
classical Greek times - but as a result of Precession see 

Note 4, it is now in the Constellation of Pisces. See Note  5

Fig. 1. The Celestial Sphere

Fig. 2. Declination & Right Ascension
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Zenith & Meridian
The Zenith is the point on the Celestial Sphere di-
rectly above the observer. (The opposite point on 
the Sphere is the Nadir).

A meridian is a great circle on the celestial sphere 
that passes through the North & South Celestial 
Poles and either through a point on the Celestial 
Sphere or through the Zenith of an observer on the 
Earth’s surface. 

Meridians are analogous to line of longitude on the 
Earth’s surface. Angles between meridians (as angles 
between lines of longitude) are measured around the 
Celestial Equator. 

Right Ascension & Declination
We are concerned with the position of the Sun on the 
Celestial Sphere. This is measured by Right Ascension 
& Declination. See Fig. 2. These are equivalent to our 
terrestrial Longitude & Latitude, except that... 
•	 Declination uses the Celestial equator, running from 

+90° to -90° - positive towards the north, negative 
towards the South. 

•	 Right Ascension is measured along the celestial 
equator and the 1st Point of Aries as origin. It is 
measured anti-clockwise - when viewed from the 
North Celestial Pole. This is the direction in which 
the Earth rotates and in which the Sun appears to 
move. Traditionally, RA is quoted in Hours/Minutes/
Seconds, running from 0 to 24 hrs. But Degrees are 
generally used in this paper.

The Sun moves around the Ecliptic at very approxi-
mately 365/360° per day, so its RA and Decl are con-
tinuously changing. In Part 2 of this series, we will see 
how solar dynamics can used to calculate the Sun’s RA 
& Declination for any given time and date.
In passing, we should note that... 
•	 the planets (from Greek πλανήτης αστήρ “wandering 

star”) move near to the Ecliptic in somewhat erratic man-
ner (from a geocentric point of view) so their RA & Decl 
are also continuously changing. 

•	 the RA and Decl of any star is effectively constant. See Note  6

•	 RA and Decl have nothing to do with the daily spinning of 
the Earth about its axis. 

Fig. 3. The Calculation’s Road Map
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What are we trying to Calculate...
Fig. 3 charts the path along which calculations are 
made. The start is made by provision of three classes 
of input…
•	 the “When”,  the local time and date;
•	 the “Where”, the terrestrial Latitude and Longitude 

of the Observer (or the Sundial);
•	 the 6 astronomical constants required – 3 of which 

are not quite constant.
In this part of  the series, 
•	 the simple connection between local Civil Time and 

date – which we hear on the radio and read from our 
watches – and Coordinated Universal Time – UTC – 
is established.

•	 the more complicated connection between Green-
wich Mean Sidereal Time - GMST - and UTC is 
made

•	 the connection between UTC and Sun’s Mean Lon-
gitude is made

•	 the formulae to establish the Equation of Time and 
the Longitude Correction is introduced.

Coordinated Universal, Standard & Civil Time
Some gnomonists eschew civil time and rely entirely on 
‘true’ or Solar time – it is noon when the Sun is South. 
The author respects this view. But he personally feels it 
is of paramount importance that the gnomonist should 
be capable to explain to our young why the sundial 
reads a different time to that on their watch or mobile 
phone. Hence the apparently perverse starting point of 
Civil – rather than Solar - Time.
It was the advent of the railways that forced society to 
adopt mean time so that the same time was used every-
where in a country (or in large portions of a country – as 
in Russia or the USA). The global starting point was 
Greenwich Mean Time – GMT. This has morphed, with 
minor changes, in Coordinated Universal Time – UTC.

Coordinated Universal Time (UTC) is 12 + the hour 
angle at Greenwich of the Mean Sun. The hour an-
gle being converted from degrees to hours at 360°/
day. 

Although the ‘tick’ of UTC now relies on atomic clocks, 
its formal definition is in terms of the Mean Sun. The 
Mean Sun – which is an imaginary body…

The Mean Sun is an abstract fiducial point at nearly 
the same Hour Angle as the Sun, but located on the 
mean celestial equator of date and characterized by 
a uniform sidereal motion along the equator at a rate 
virtually equal to the mean rate of annual motion of 
the Sun along the ecliptic.

As an example, when the Mean Sun’s meridian has 
moved west by 15° (or 1 hour) from the Greenwich me-
ridian, UTC = 12 + 1 = 13:00 hrs, which is what  one 
would expect. The term ‘fiducial’ is the technical term 
for a point that is a fixed and trusted basis for compari-
son. In simple terms...
•	 the mean sun is an imaginary body that uniformly 

moves around the Equator, once in one tropical year.
on the other hand...
•	 the true Sun, moves non-uniformly around the Eclip-

tic, once in one tropical year. The true sun is thus 
‘out-of-angle’ with the axis which creates our day/
night. 

In passing, we should note that...
•	 the ‘Tropical’ Year is the time taken for the sun (on aver-

age) to pass through the 1st Point of Aries - 365.242 191 
days. Note that our leap year system gives a ‘Calendri-
cal’ Year of (365.25 x 400 - 3) / 400 = 365.242 500 days, 
which closely matches the length of the Tropical Year, 
ensuring that the Calendar does not drift away from the 
Seasons.

•	 Atomic Time is kept in sync with the solar definition of 
UTC by the occasional insertion of Leap Seconds, which 
compensate for the gradual slowing of the Earth’s rota-
tion.

UTC is a surrogate for Solar time in providing a uni-
versal and uniform time scale. The Mean Sun’s position 
has zero declination and its Right Ascension increases 
uniformly from 0° at the Vernal equinox to 360° at the 
next Vernal equinox. 
In the 1880s, Greenwich Mean Time was established as 
legal time across the UK. Other countries offset their 
own mean time by integral number hours (or half hours) 
before or after Greenwich - thus introducing the Time 
Zones. So Standard Time was created. Greenwich Mean 
time morphed with minor changes into Coordinated 
Universal Time (now UTC).

Standard Time – ST - is Mean Time on the Time 
Zone meridian of that area. Time Zone meridians 
are (usually) in 15° Longitude increments away 
from the Greenwich meridian.

Standard Time may be further moderated by the intro-
duction of Summer or Daylight Saving to give Civil 
Time - CT. In winter, Civil Time is the same as Standard 
Time. Civil Time is the legal binding time in a given 
Time Zone.
UTChrs = ST hrs −Time Zonehrs (+ve  East  of  Greenwich)........... Equ 1.1

UTChrs = CT hrs −Time Zonehrs − DST hrs .................. Equ 1.2

Calculations of solar positions need both a time and a 
date, and it must be recognised that if the correction  in 
Eqn. 1 lead to a different day in Greenwich than that of 
the observer, a correction is needed...
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if UTChrs > 24
UTChrs =UTChrs − 24 & Dateday = Dateday +1

if UTChrs < 0
UTChrs =UTChrs + 24 & Dateday = Dateday −1

................ Eqns 1.3

Finding Greenwich Mean Sidereal Time
Before atomic clocks, the problem with GMT was that 
it was based on an imaginary mean Sun. Thus it was not 
measurable, especially by navigators trying to calculate 
longitude. They require an entirely uniform, definable 
and measurable time scale that accords with the axis of 
spin of the Earth and which is independent of the vaga-
ries of the Sun’s apparent movement. This is provided 
by the stars - so-called Sidereal Time (from the Latin 
word ‘sidus’ meaning ‘star’).
On successive nights, it is easy to measure ‘transits’ of 
any star i.e. when it has its highest altitude in the sky. 
Thus the stars began to be used as time-keepers and so-
called sidereal day was defined by successive transits of 
any star through an observer’s meridian. The introduc-
tion of Sidereal time was the start of the gradual decline 
of Sundials as civilization’s primary time keeper. As-
tronomers – rather than gnomonists – gradually became 
Masters of Time
The sidereal day is not the same as the solar day. Fig. 4 
shows a solar day, defined by the transit of the sun, as 
compared with the sidereal the day, defined by the tran-
sit of a star. There are 366.242 transits of a given star 

in the same time as 365.242 transits of the sun. This is 
because the Sun itself has circled one revolution against 
the stars. The ratio 366.242/ 365.242 = 1.002738 will 
crop up again in our calculations.
Against this background, 

Greenwich Mean Sidereal Time (GMST) is the an-
gle along the celestial equator from the Mean Ver-
nal Equinox (1st Point of Aries) to the Greenwich 
meridian.

Both Sidereal Time and UTC record an evenly ticking 
cycle that completes each tropical year. Therefore, it is 
possible to define UTC explicitly in terms of Sidereal 
Time. This definition is ‘owned’ by the International 
Astronomical Union.
GMST hrs = (6.697 374 558hrs

+ 0.065 709824 41908 ×  D0
days  

+ 1.002 737909 35 ×UTChrs  
+ 0.000026 ×T 2 ) mod  24 .............. Eqn 1.4

D0 is the number of days from 12:00 
hrs on 1st January 

2000 – the so-called Epoch2000.- until the mid-night that 
starts the day in question. T is the number of Julian Cen-
turies of 36,525 days from Epoch2000 until the moment 
of time in question. The ‘mod’ function reduces the an-
swer to fall between 0 and 24 hours. This is a slight 
simplification of the complete definition. For ultimate 
but unnecessary accuracy... See Note  10. 

The numbers in this definition are not arbitrary. 
•	 6.697 374 558 was the Greenwich hour angle of the 

Sun at Epoch2000 .
•	 0.065 709 824 419 08  

= 24 hrs/day / 365.242 191days/tropical year

	 which ensures that, in one tropical year, GMST in-
creases by 24 hours, corresponding to the extra side-
real day in the tropical year.

	 D0 is the number of days from Epoch2000 to midnight 
of the day in question.

•	 1.002 737 909 35  
=366.242 19 sidereal days/year/365.242 191tropical days/year

	 this converts from normal to sidereal hours.
•	 0.000 026 x T2 accounts for Precession. See Note  4

	 T is the number of Julian Centuries (of 36525 days)  
from the Epoch2000.

	 Note that three of the six input astronomical con-
stants are involved in this definition.

Since our years and months are of variable length, any 
given date and time combination is not directly amena-
ble to mathematical formulae, so a strictly linear time/
date scale is used throughout the astronomical world. 
This is the Julian Date (JD).

Fig. 4. Sidereal Time -v- Solar Time

Observer sees Sun
and any Star 

crossing due South.

It is noon.

Observer sees
Sun crossing
due South.

Angle A
= 360/365.242°

Angle B
= 360/366.242°
The Sideral Day

is
(A - B) x 24 x 60
= 3 mins 5 secs

shorter than
the Solar Day

It is one solar day
 = 24 hrs later.

A

Observer sees
same Star 

crossing due South.

 

It is one sidereal
day later.

B

... to distant Star

Sun

Earth

What is seen... What is seen... What is seen...
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The Julian Date is the number of decimal days that have 
elapsed since noon coordinated universal time (UTC), 
1st January, 4713 BC. See Note  8. However for these calcu-
lations, times from Epoch2000 (12:00 hrs UTC on 1st January 
2000) are needed, which is the Julian Date reduced by 
2451545.0
In passing, we may note that...

Date
Epoch 2000

days  = JDdays  -  245 154 5.0days .................... Eqn 1.5

Date/Time 
Greenwich is given by YYYY years, MM months, DD 

days, HH hrs, MM mins then to obtain the D0 - during this 
century - apply the following formula:
bbb =  367 ×  YYYY  −  730531.5 

ccc =  − int 7 × int YYYY + MM + 9( ) /12( )( ) /  4( )  
ddd = int 275 ×MM / 9( )  +  DD
Dtoday = HH +MM / 60( )  /  24

D0  = a +  b +  c  See  Note  9

T =  (D0  +  Dtoday ) /  36525 .................. Eqn. 1.6
     

Why these formulae work is a mystery to the author...
The ‘int’ function removes the fractional part of the cal-
culation just made. The ‘mod’ function reduces the re-
sult until it lies between 0 & 24. 

Finding the Sun’s Mean Longitude
Referring once more to Fig. 3, the next thing to calculate 
is the Mean Sun’s Longitude. This may also be referred 
to as the Mean Suns; Right Ascension. It is measured 
along the Celestial equator, from the 1st Point of Aires 
See Figs. 5 & 6.
In the latter, working from out to in, see the various 
arcs...
•	 the Sun’s Mean Longitude - MO - origin 1st Point of 

Aries
•	 GMST - origin 1st Point of Aries
•	 UTC - origin at the Nadir (the opposite point) from 

the Mean Sun. This reflects the definition of UTC 
(see above) - or more obviously the fact that our 
0:00hrs at midnight is 180° away from mean noon, 
the moment when the Mean Sun’s Hour Angle is 0°

•	 complimentary arc 180 - UTC

From the figure, it is apparent that...
M0

deg = GMST deg -UTCdeg+180deg .................. Eqn. 1.7

Introducing the Sun’s Right Ascension and the 
Equation of Time
The Sun’s Right Ascension was introduced above, see 
Fig. 2. Putting this together with the definition of  Mean 
Longitude, we can find the Equation of Time. See Figs. 
7 & 8. From the arcs in Fig. 7, it may be seen the Equa-
tion-of-Time 
EoT deg  = M0

deg -α deg ............................................... Eqn. 1.8

Fig. 5. The Mean Sun & Mean Longitude

Fig. 6. GMST, UTC & Mean Longitude

Fig. 8. The Equation of Time - see Eqn. 1.8

Fig. 7. The Equation-of-Time



Page 7

Combining Eqns. 1.7 & 1.8...

EoTastronomical
deg = GMST deg −αdeg − UTC deg +180deg ... Eqn. 1.9

All of these are explicitly known except for the Right 
Ascension of the Sun. This will be computed in Part 2 of 
this series. Those interested in gnomonics tend to use 
the inverse of this definition (i.e. the correction to be 
made to sundial time to get mean time) and want the 
results in minutes, thus... 

EoTgnomonical
mins  =   −  4 x EoTastronomical

deg .........................Eqn. 1.10

In passing we may note that... 
the formal definition from the all powerful Explana-
tory Supplement to the Astronomical Ephemeris and the 
American Ephemeris & Nautical Almanac Ref. 2, is:

.. As from 1965….. The equation of time will then 
be defined as the correction to be applied to 12h + 
Universal Time to obtain the Greenwich Hour Angle 
Sun,......... ; it is now so tabulated in the almanacs 
for navigators and surveyors…

This implies...

12degs +UTCdegs + EoTastronomical
degs  =  GHASun

degs or
EoTastronomical

degs  =  GHASun
degs −UTCdegs −12degs .....Eqn. 1.11

But, by definition...	
GMST = angle 1stPt. of Aries ⇒ G'wich Meridian
α Sun = angle 1st Pt. of Aries ⇒ Sun
∴GMST −α Sun = angle G'wich Meridian ⇒ Sun = GHASun

..........Equ1.12

Thus Equation 1.19 is the same as Eqn. 1.12

The Longitude Correction
Solar noon at 1° west of a Time Zone meridian is 4 mins 
of time after Solar noon on the Time Zone meridian. 
Thus, if we wish to correct our sundials to provide what 
our watches read, we must apply an additional offset - 
the Longitude Correction ...

σ deg  =  Time Zonehrs ×15deg / hr −  λt
deg .................... Eqn. 1.13

So we may conclude that - if we coin a new term...
EoTLocal

mins  =  EoTGnomonical
mins +σ mins...............................Eqn. 1.14

For a standard sundial (i.e. one whose hour lines are not 
longitude corrected and whose noon line on the North/
South meridian), it is suggested that any correction ta-
bles or graphs should indicate EoTLocal, with the ad-
ditional comment that DST Hours should be added in 
the Summer.

Summing up
Table 1, below, sums up the various formulae, presented 
above. It can be seen that, for at any date/time/location, 
all the parameters can be deduced or calculated from 
one another - provided that the Right Ascension of the 
Sun can be found. These calculations, together the con-
version to Azimuth and Altitude, Sunrise and Sunset. 
will be presented in Part 2 of this series.

Parameter Symbol Formula in degrees Example 
Date given 2nd Feb 2013
Observer’s Longitude, +ve east of Greenwich LON or λt given 23.717° 23° 43’ 00”
Observer’s Time Zone, +ve east of Greenwich TZ given 60° 2 hrs

Observer’s Summer Time or Daylight Saving Hours DST given 0° 0 hrs

Observer’s Civil Time CT given 172.500° 11:30 am
Observer’s Standard Time ST CT - DST 172.500° 11:30 am
Coordinated Universal Time UTC ST - TZ 142.500° 9:30 am
Greenwich Mean Sidereal Time 
Calculated in terms of Date & UTC GMST (see Eqn. Set 1 

& Eqn. 2) 274.761° 18hr 19min 02sec

Sun’s Right Ascension 
Calculated in terms of Date & UTC RA or α (see Part 2) 315.673° 21hr 02min 41sec

Equation of Time: Local Mean to Dial Time 
(Astronomical Convention) 
See Note below 

EoTAstronomical

GMST − α − UTC +180° 
  = GMST − α −  

(CT - DST - TZ) + 180°
-3.413° -13 min 39 sec

Equation of Time: Dial to Local Mean Time 
(Gnomonist’s Convention) EoTGnomonical - EoTAstronomical 3.413° 13 min 42 sec

Longitude Correction σ TZ - λt 6.283° 25 min 08 sec

Equation of Time: Dial to Standard Time EoTLocal EoTGnomonical + σ 9.696° 38 min 47 sec

Note: The Equation of Time calculated in this way may - depending on the time of day and year - give spurious looking results as a 
result of the cross-over from 24 hrs back to 0 hours. To correct,   if EoT mins < -36 then add 48,  if EoT mins < -12 then add 24.

Table 1. Basic Calculations



Page 8

Notes
1.	 Various astronomical terms use the qualifier ‘equation of…’: 

the equation of time, the equation of centre, the equation of 
the equinoxes, the equation of origins, the equation of light. 
The term coming from Greek to Arabic to the mediaeval Latin 
‘equato’ as in Equato Diem for EoT. In all cases, ‘equation 
of…’ means the difference between what is observed and the 
mean values of the phenomenon in question.

2.	 The Earth’s rotation is not completely uniform. Not only does 
the position of the North and South Poles wander, but the rate 
of rotation is slowing in a somewhat random fashion by a num-
ber of seconds per decade. This is believed to be caused by tidal 
friction and crustal movements. This gives rise to the inclusion 
of ‘leap seconds’, mentioned in Note 7.

3.	 Two free software packages : ‘Persistence of Vision’, a precise 
3-D simulation package & a precise 2-D NodeBox were used to 
prepare the graphics. The data required to draw the Stars in Fig. 
1 was derived from the Right Ascension & Declinations of the 
1000 brightest stars, readily found on the internet. All the figs 
used precisely drawn in accordance to the routines described in 
this document & Part 2 of the series.

4.	 Nothing on Earth or the Heavens is moving uniformly... In par-
ticular, the Earth’s axis is slowing gyrating like an out-of bal-
ance spinning top. This effect - called Precession - has a long 
period of 25,600 years. It is caused by the torque induced by 
the Sun & Moon’s gravitational pull on the equatorial bugle in 
the Earth’s shape. Over time. Precession moves the position 
of the Vernal Equinox through the Sky. Most of the significant 
effect of precession, in these calculations is subsumed in the 
definitional formula for Mean Time. In addition to Precession - 
and primarily because of tidal forces between the earth and the 
moon - the axis of the earth is vibrating such there are complex 
minor variations in the position of the Vernal Equinox and the 
Obliquity of the axis. This is called Nutation. The effects are 
minor in the context of this paper. But precession and nuta-
tion lead to some potentially confusing nomenclature within 
astronomy. The terms mean equator, mean obliquity, mean 
equinox, mean sidereal time indicate that the effects of nuta-
tion are averaged out. (However, mean time has an entirely 
different context.) The term...of date indicates that precession 
has been considered, while...of Epoch refers to mean values on 
1 January 2000, thus without precession. The term apparent 
indicates that all precessional, nutational and any other effects 
have been taken into account - i.e. it is what you will actually 
get on a given date/time.

5.	 The Reader should not confuse the astronomical Constellation 
of (e.g.) Pisces with the astrological House of Pisces. The two 
were the same in antiquity. The astrological Houses split the 
year into 12 equal portions starting at Aries on the Vernal Equi-
nox. This is tropical astrology. However there is another branch 
- called Sidereal astrology, which does recognise the shift in 
constellations due to Precession.

6.	 In fact, since our galaxy is expanding, the stars do move rela-
tive to one another - their so-called ‘proper motion’ - but at 
usually imperceptible rates, unless they are close to the Sun. 
For example, the declination of our second closest star Alpha 
Centauri is changing at some 13 seconds of arc per year

7.	 The current basis for international timekeeping is Temps Atom-
ic International (TAI). This is kept by an array of some 200 
atomic clocks, kept in 30 countries around the world. These 
clocks ‘tick’ using the vibrations of the Cesium atom. The in-
ternational standard second is the time taken for 9,192,631,770 
cycles of radiation emitted during the transition between two 
hyperfine levels of the ground state of cesium 133 at 0° Kelvin. 
24 x 60 x 60 x 365.242198781 of these original atomic seconds 
were matched to the length of the tropical year in 1900.

	 The practically used time standard is Coordinated Universal 
Time (UTC) = TAI + a number of ‘leap seconds’, which are 
added to correct for the slight slowing of the Earth’s rotation. 
This correction is made to maintain the historic and cultural/re-
ligious connection needed to align timekeeping with the ‘tick’ 
of the average solar day There have been 35 leap seconds added 
since 1971. As far as the gnomonist is concerned, UTC equates 
to the old Greenwich Mean Time - a term now abandoned.

	 In order to sense when leap seconds are required and for other 
astronomical reasons, a further time scale confusingly called 
Universal Time (UT) is counted from 0 hours at midnight, with 
the unit of duration of the mean solar day. This is measured by 
observing the daily motion or various starts and extraterrestrial 
radio sources. The measured time is called UT0, which is then 
corrected to UT1, to account for the wobbling of the earth as 
a result of polar motion. The difference between UT1 (the ‘as-
tronomical’ tick and UTC (the ‘atomic’ tick) is referred to as 
Delta T. Daily values of Delta T are published every week and 
forward forecast for 6 months. If Delta T exceeds 0.8 seconds, 
a further leap second will be introduced either on the following 
30 June or 31 December.

	 Moves - mostly from the computing industry - to abandon Leap 
seconds have led to an international symposium in 2012. Deci-
sions have been deferred. China consider it important to main-
tain a link between civil and astronomical time due to Chinese 
tradition. This may be the clinching argument.

	 The serious student of time or of planetary movement must also 
know all about Terrestrial Time (TT), Geocentric Coordinate 
Time (TCG), Barycentric Dynamical Time (TDB) and Bary-
centric Coordinate Time (TCB). These are generally concerned 
with the relativistic components of time keeping.

8.	 The Julian date system was invented by Joseph Justus Scaliger 
(1540-1609), a French classical scholar, in 1582, when he in-
vented the Julian period, named after his father, Julius Caesar 
Scaliger. This was a period of 7,980 = 28 x 19 x 15 years.
•	 28 is the number of years in the Julian calendar that it 

takes for dates to fall again on the same days of the week, 
the so-called Solar cycle. 

•	 19 is the number of years in the Metonic cycle, devised by 
Meton of Athens in 432 BCE, although known in China 
as early as 2260 BCE. The basis of ancient Greek, Jewish, 
and other calendars, it shows the relationship between the 
lunar and solar year. In 19 years of exactly 365.25 days 
each (the Julian, or solar year), there are 235 lunar cycles, 
with seven of these years having a 13th, or embolistic, 
month. At the end of the cycle, the phases of the moon re-
cur on a particular day in the solar year. The Metonic cycle 
was important because it established a lunar calendar hav-
ing a definite rule for intercalary months, and didn’t get 
out of phase with the cycle of tropical (seasonal) years. 

•	 15 is the number of years in the ancient Roman cycle of 
Indiction, a 15-year period used for taxation. It was used 
by Emperor Constantine beginning in 312 CE, and contin-
ued not only during the Middle Ages, but was used in the 
Holy Roman Empire until Napoleon abolished it in 1806.

	 Scaliger chose 12:00 UT, 1 January 4713 BCE as the day 0.0 
of the Julian system, since it was the nearest past year when all 
three cycles - Solar, Metonic and Indiction - exactly coincided. 
The present Julian period will end at 12:00 UT, 31 December 
3267. (Adapted from Ref. 7.)

9.	 The observant reader will note that the introduction of Julian 
Date is not strictly necessary. It has been included since it is 
a frequently used astronomical term. In this case, the numbers 
a,b,c, & d are all that are required - providing the days since 1st 
Jan 2000.



Page 9

Kevin Karney, 
Freedom Cottage, 
Llandogo,
Monmouth NP25 4TP,
Wales.
Kevin@Karney.com
September 2014

10.	 This equation is an approximation - but good to 0.1 secs over 
the current century, see Ref. 8. For the ultimate precision, see 
Ref. 9 and the IAU SOFA computational routines in Ref. 10.

11.	 For greater precision, one may follow the route taken by the US 
Naval Observatory’s MICA Ref. 14 program uses the expression...

EoTAstronomical
hrs  =  GMST hrs + EoEhrs −12hrs −UTChrs − RASun

hrs

............. Eqn. 1.15

	 RA is Apparent Geocentric, True Equator and Equinox of Date. 
See Note  4 for meaning of apparent and of Date. 

	 EoE is the Equation of Equinox, which is a small correction to 
account for nutation (typically of +/- a few seconds).

12.	 “Now let me see,” the Golux said, “if you can touch the 
clocks and never start them, then you can start the clocks 
and never touch them. That’s logic, as I know and use it...” 
James Thurber in The 13 Clocks.
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Calculations Required
In Part 1 of this Series, we learnt how to calculate the 
Greenwich Mean Sidereal Time - GMST, together with 
the formulae needed to calculate the Equation-of-Time 
- EoT. In this part we will see how the Sun’s actual posi-
tion in the sky may be found, in terms of...
• 	 the Ecliptic: the Sun’s Longitude - λ
• 	 the Equator: its Right Ascension - α or RA - and  

Declination - δ
•	 the Local Hour Angle - h
• 	 the Horizon: its Altitude -a - and Azimuth - A
•	 the approximate times of Sunrise - hsr and  

Sunset - hss

Basic Solar Positional Astronomy 
Part 2: Calculating the Sun’s Right Ascension, Declination & EoT 

KEVIN KARNEY

Once the RA is found, the Equation of Time can be 
computed.
EoTastronomical

deg = GMST deg −α deg −UTCdeg+180deg .......Eqn. 2.1

Figs 1 to 3, repeated from Part 1, show illustrates the 
essential definitions and show graphically the Equation 
of Time.
There are two steps in calculating the Sun’s Right As-
cension & Declination, it is necessary to... 
(i)	find its position on the Ecliptic. This is the Solar Lon-

gitude - λ - which is measured around the Ecliptic, 
with 0° at the 1st Point of Aries. This is a dynamical 
problem.

(ii)	convert the Solar Longitude (measured around the 
Ecliptic) to Declination - δ - and Right Ascension - α 
- (measured around the Equator, but also with 0° at 
the 1st Point of Aries.)

Figs 4 to 8 show these steps graphically.

Fig. 3	 The difference between Mean Longitude and Right As-
cension is the Equation-of-Time.

Fig. 4	 It is necessary to invoke the Dynamical Mean Sun, 
another fictious Sun: this time on the Ecliptic. It is. It rotates 
uniformly around the ecliptic, once per year (as does the 
Mean Sun). Thus, its position is also defined by the Mean 
Longitude - but measured along the Ecliptic.

Fig. 2	 Since out civil time-keeping system is tied to the di-
urnal rotation of the Earth, we have chosen the position of a 
‘ficticious’ Mean Sun on the Celestial Equator as our primary 
civil time keeping system. We can calculate its position - the 
Mean Longitude, since it is connected to GMST (see Part 1). 
The Mean sun rotates around the Celestial Equator once per 
year.

Fig. 1	 It is required to find the actual position of the Sun - in 
terms of Declination & Right Ascension. The True Sun pro-
jected onto the Celestial equator provides the Right Ascen-
sion.
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Calculating the True Sun’s Longitude
This calculation for any given instant relies on three 
facts...
1	 the Longitude of Mean Perihelion see Note 2 - ω - when 

the Earth is closest to the Sun, which corresponds to 
a date around 3rd January. This value is, once more, 
not exactly constant. Perihelion is moving towards 
the Vernal Equinox at the rate of 0.17° per century. 
For convenience, we will use... See Note 1

	 ω deg= 248.545 360 + 0.017196 ×  YYYY ....... Eqn. 2.2

	 where YYYY is the year
2	 the Sun’s apparent orbit is an ellipse - Kepler’s First 

Law - with eccentricity - e - of 0.016 713. This value 
is not actually constant, but varying marginally... See 

Note 1

	

e = 0.017585 -  0.438 ×  YYYY / 1 000 000( )
........ Eqn. 2.3

3	 the apparent movement of the Sun obeys Kepler’s 
Third Law - that a line joining the Earth to the Sun 
will sweep out equal areas in equal times.

This calculation requires the introduction of some new 
concepts and some very old mediaeval terms. Whereas  
we have used the 1st Point of Aries as our prime celes-
tial origin, for elliptical orbits, we use instead the direc-
tion of Perihelion, when the Sun is closest to the Earth. 
Refer to Fig. 9, which is in the plane of the Ecliptic, 
unlike those illustrations in Part 1 of the series, which 
are in the plane of the celestial equator. For illustrative 
clarity, this shows an elliptical orbit of eccentricity of 
0.4. The true value is a minute 0.0175, which if used 
in the diagram would make the elliptical path visually 
indistinguishable from a circle
Note the following...
•	 the Earth, at the centre of the illustration
•	 the True Sun, travelling on an ellipse, with the Earth 

at one of the ellipse’s foci. Its position in relation to 
Perihelion - when the sun is closest to the earth - is 
called the True Anomaly - λ

•	 the imaginary Mean Dynamical Sun on the Celestial 
Ecliptic, a circle centred on the Earth. This body uni-
formly travels around the Ecliptic once in a tropical 
year. It is coincident with the Mean (equatorial) Sun 
at the 1st Point of Aries. It is thus the exact equiva-
lent to the Mean Sun (on the Equator). Importantly, 
referenced to the 1st Point of Aries, at any moment 
in the year, its longitude on the Ecliptic is identical to 
the longitude of the Mean Sun on the Equator. Hence 
it can be calculated in terms of GMST. Its position in 
relation to perihelion is called  the Mean Anomaly - 
M

•	 the imaginary Eccentric Sun, travelling on a circular 
path, whose centre is the centre of the ellipse, such 

Fig. 5 	The dynamics of the elliptical movement of the True 
Sun is tied to Perihelion - when the sun is closest to the Earth. 
The Longitude of Perihelion (origin 1st Point of Aries) is an 
astronomically known fact. The Mean Longitude is equal to 
Longitude of Perhelion + the Mean Anomaly.

Fig. 6 	Keplarian physics allows the True Anomaly, which is 
the position of the True Sun with respect to Perihelion, to be 
calculated in terms of the Mean Anomaly.

Fig. 7 	Adding the True Anomaly to the Longitude of Perihe-
lion yields the True Longitude of the Sun.

Fig. 8 	Spherical Trigonometry, involving the True Longitude 
and the Obliquity, yields both Right Ascension & Declination
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that it is vertical (in the picture) above/below the 
True Sun. The Eccentric Sun is another imaginary 
body, which is only required as an intermediate to 
solve Kepler’s  Third Law. Its position in relation to 
perihelion is called the Eccentric Anomaly - E.

•	 the longitude of Perihelion - ω - provides the link 
between longitude and anomalies

	

M0 = M  +ω ................................................... Eqn. 2.4
λ = ν +ω ................................................... Eqn. 2.5

Application of Kepler’s third law reveals the connection 
between the Eccentric Anomaly, and the Mean Anom-
aly is...

M rad  =  Erad −  e× sin Erad( )  .. Kepler’s Formula .. Eqn. 2.6

Appendix 1 provides the derivation of this equation in 
the 17C method used before calculus was common. Un-
fortunately, Kepler’s Formula - combining an angle E 
together with its trigonometrical sine - is not directly 
soluble. It requires an iterative solution. Application of 
a Newton Raphson approximation shows that - since  
the eccentricity of the ellipse is so near to zero - only 
one  single iteration is required, to give the value of E

Erad =  M rad −
e× sin M rad( )( )

e × cos M rad( ) −1( )... Eqn. 2.7

Appendix 2, Figs 17 to 22 provides the derivation of 
this equation
The True Anomaly is connected to the Eccentric Anom-
aly by trigonometry...

ν =  atan2 (1 -  e2 ) × sin E( ),  cos E( ) − e( )( )....... Eqn. 2.8

Appendix 2, Fig. 23 provides the derivation of this equa-
tion. There is an alternate often quoted formula, see Note 3. 

Calculating the Right Ascension & Declination
Knowing the Sun’s Longitude and the Obliquity of 
the Ecliptic, it is simply a matter of solving a Spheri-
cal right angle triangle to find the Right Ascension & 
Declination.

Fig. 9. True, Dynamical & Eccentric Suns, viewed in the Ecliptic Plane

Obliquity in degrees is given by... See Note 1

ε deg =  23.699 30deg − 0.00013 ×  YYYY..................Eqn. 2.9

The right-angled triangle can be solved using Napier’s 
pentagon which is a mnemonic aid that helps to find all 
relations between the angles in a right spherical triangle.
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Fig. 10. Napier’s Pentagon. The careful reader will note that 
this illustration does not conform to the others in this paper. 
As shown, δ would be calculted as a +ve number. Rest as-
sured that the trigonometry works and using the conforming 
360 - α & 360 - λ will provide a negative value of δ.
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The mnemonic works thus... Write the six angles of the 
triangle (three vertex angles, three arc angles) in the 
form of a circle, sticking to the order as they appear in 
the triangle (i.e. start with a corner angle, write the arc 
angle of an attached side next to it, proceed with the 
next corner angle, etc. and close the circle). Then cross 
out the 90° corner angle and replace all angles non-ad-
jacent to it by their complement to 90° (i.e. replace, say, 
λ by 90° − λ). The five numbers that you now have on 
your paper form Napier’s Pentagon. 
For any choice of three angles, one (the middle angle) 
will be either adjacent to or opposite the other two 
angles. Then Napier’s Rules hold that the sine of the 
middle angle is equal to:
•	 the product of the cosines of the opposite angles, as 

in Fig. 11, thus...

	

sin δ( ) = cos 90 − ε( )× cos 90 − λ( )
∂ = sin−1 sin ε( )× sin λ( )( ) ................ Eqn. 2.10

•	 the product of the tangents of the adjacent angles, as 
in Fig. 12, thus...

	

sin 90 − ε( ) = tan α( )× tan 90 − λ( )
tan α( ) = cos ε( )× tan λ( )
α = atan2 cos ε( )× sin λ( ),cos λ( )( )

................... Eqn. 2.11

Calculating the Local Hour Angle
All the astronomical calculations so far have related to 
Greenwich. In order to calculate the Sun’s Altitude and 
Azimuth for an observer at a particular time of day and 
at a particular terrestrial location, we will require to find 
its Local Hour Angle...

The Sun’s Local Hour Angle is the angle between 
the Sun’s meridian and the Observer’s meridian.

At solar noon, the LHA is zero. Following normal prac-
tice, the LHA is negative before noon and positive after 
noon. In this document, however, it is counted positive 
from noon.
Looking at Fig. 13, we can deduce the connection be-
tween LHA - h0 -, Right Ascension - α0 - Greenwich 
Mean Sidereal Time - GMST - and the observer’s lon-
gitude - λt

0. The LHA is the innermost dotted arc. The 
green arrow is 3600 - LHA0 (and is the ‘normal’ defini-
tion of LHA). Working from the outer arc, it is apparent 
that the Green arc =...
α deg − λ deg −GMST deg =  360deg − hdeg

∴

hdeg = GMST deg + λ deg −α deg ...................................Eqn. 2.12

Calculating the Sun’s Altitude and Azimuth
All the calculations so far in this paper have related to 
the Celestial Sphere. Now we must introduce the po-
sition of the observer at a given terrestrial Latitude & 
Longitude

Fig. 14.	 The Equatorial Plane, the Horizonal Plane and the 
Observer

Fig. 13. Local Hour Angle

Fig. 14 shows the situation at a given time. Note the...
1)	 Equatorial Plane (olive coloured) from which are 

measured the...
•	 Sun’s declination (the orange arcs) - already cal-

culated
•	 Observer’s Latitude (the purple arcs) - known
•	 Observer’s location with respect to the Sun: the 

Local Hour Angle (the red arc) - already calcu-
lated

Fig. 11. Declination Fig. 12. Right Ascension

90-εα

δ 90-λ
90-x

90-εα

δ 90-λ
90-x
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2)	 Observer’s horizontal plane (greenish coloured), 
from which is measured ...
•	 Sun’s Altitude (the blueish arcs) - to be found
•	 Sun’s Azimuth (the green arc) - to be found

Fig. 15 strips away extraneous detail to show the spher-
ical triangles involved. While Fig. 16 shows the final 
spherical triangle to be solved.
In spherical  trigonometry see Ref. 1, the spherical laws of 
cosines and sines state that...
cos c( ) = cos a( ) × cos b( ) + sin a( ) × sin b( ) × cos C( )
sinA / sin a( ) = sin B( ) / sin b( ) = sin C( ) / sin c( )

.........Eqn. 2.13

where a, b & c are the angular arc lengths, while A is the 
angle between arcs b & c, etc. Applying the cosine law 
to Fig. 16, twice...
cos 90 − Alt( ) = cos 90 − Lat( ) × cos 90 − Decl( ) + ...

sin 90 − Lat( ) × sin 90 − Decl( ) × cos h( )
........ Eqn. 2.14  

and
cos 90 − Decl( ) = cos 90 − Lat( ) × cos 90 − Alt( ) + ...

sin 90 − Lat( ) × sin 90 − Alt( ) × cos Az( )
........ Eqn. 2.15

Converting these to standard nomenclature gives the 
Sun’s Altitude...
arad = sin−1 sin φ( )× sin δ( )+ cos φ( )× cos δ( )× cos h( )( )

........ Eqn. 2.16

cos A( ) = sin δ( )× sin φ( )× sin a( )
cos φ( )× cos a( )

⎧
⎨
⎩

⎫
⎬
⎭

........ Eqn. 2.17

Equation 26 provides some ambiguity to the azimuth 
value since (e.g.) the cosine of both 170° & 190° are the 
same. But if the sine law is applied..
sin A( ) = cos δ( )× sin −h( ) cos a( ) ....................... Eqn. 2.18

then with no ambiguity, combining Eqn. 2.13 with Eqn. 
2.14

Arad = atan2 sin A( ),cos A( )( ) .............................. Eqn. 2.19

Step 4 -  Finding the Times of Sunrise and 
Sunset
Sunrise and Sunset are defined as the moment when the 
apparent centre of the Sun’s disc is at zero altitude. In 
addition, the twilights are defined in terms of the appar-
ent altitude of the centre of the Sun’s disk
•	 civil twilight 	 altitude	 0° to	 -6°
•	 nautical twilight: 	 altitude	 -6° to 	-12°
•	 astronomical twilight: 	altitude 	-12° to 	-18°	
Apparent altitude is the term used when the altitude is 
corrected for the effect of atmospheric refraction. The 
degree of refraction is dependent on the temperature 
and pressure of the atmosphere. There are empirical 
formulae allowing its estimation, which are presented 
- without comment - in steps 63 - 67 of Table 1, below. 
But See Chapter 16 of Ref. 2 for further elaboration. 
Refraction can be around ½° at altitudes close to zero in 
temperate climates. This is approximately equal to the 
angular size of the whole of the Sun’s disc. One cannot 
find the moment of sunset without knowing atmospher-
ic conditions and then iterating through the refraction 
calculations.
For most gnomonists, it is sufficient to estimate in the 
following fashion...
•	 forget about refraction 
•	 calculate the declination δ at midday
•	 calculate the longitude corrected gnonomical Equa-

tion of Time, EoTLocal at midday
•	 put altitude = 0 into Eqn. 25. 
This yields the sunrise/set hour angle to be...

hSunrise/set
deg = ±cos−1 − tan ϕ( )× tan δ Noon( )( ) ×180deg

π
............... Eqn. 2.20

Then, converting to hours & including the EoT, yields 
the time and azimuth of Sunrise and Sunset...

Fig. 15.	 As Fig. 13. but with extraneous information removed

Fig. 16.	 The essential spherical triangle



Page 15

Table 1 Part 1

TSunrise
hrs = 12hrs − hSunrise/set

deg

15
⎛
⎝⎜

⎞
⎠⎟ − EoTLocal

hrs .............. Eqn. 2.21

TSunset
hrs = 12hrs + hSunrise/set

deg

15
⎛
⎝⎜

⎞
⎠⎟ − EoTLocal

hrs .............. Eqn. 2.22

ASunrise/set
deg = ±cos−1 −sin δ Noon( )

cos φ( )
⎛
⎝⎜

⎞
⎠⎟
×180deg

π

...............Eqn. 2.23

In passing, we may note that, adding together Eqns. 
2.17 & 2.18, gives

EoTLocal
mins = 30 × TSunset

hrs +TSunset
hrs − 24( ) ..................... Eqn. 2.24

which means that, if you read the time of sunrise and 
sunset from your local newspaper, you can find the lati-
tude corrected Equation of Time for your location. This 
was a trick used from Victorian times See Ref. 3 & Note 4. Since 
sunrise and sunset are usually only quoted to the near-
est minute, it is somewhat surprising that this somewhat 
crude method gives the Equation of Time accurate to 
+/- 1 minute throughout the year in temperate latitudes. 

Worked Example
Table 1, below, consolidates all the calculations in Parts 
1 and 2. The functions that are used are given at then 
end of this section. Note carefully, that in some applica-
tions, these functions may not be present or called in a 
different manner.
In the Table above, the columns are…
i	 line number.
ii	 name of parameter
iii	 the parameters symbol, with a qualifier subscripted 

and its units superscripted, thus EoT Gnomical
 Min

iv	 the worked example resulting value
v	 the required formulae
vi	 the Equation number from the text - numbers thus 

1.nn relate to Part 1 of this series, 2.nn to this part.
Where figures are given in red bracketed italics these 
are the results of working this example through a preci-
sion astronomical program, See Ref. 4.

Input Observer’s Location
1 Longitude +ve East of Greenwich λt ° 23.71667

The Acropolis, Athens2 Latitude +ve North of Equator φ ° 37.96667

3 Time Zone +ve East of Greenwich TZ hrs 2

Input Observer’s Date & Civil Time - (that is the Time that one reads on a clock or hears on the radio)

4 Summer Time DST hrs 0
5 Year YYYY 2015

11:30 a.m 2nd February 2013
6 Month MM 2
7 Day DD 2
8 Hour HH 11
9 Minute MM 30

Time related Parameters, Greenwich Mean Sidereal Time & the Sun’s Mean Longitude
10 UTC Uncorrected UTCuncorr

hrs 9.5 ST hrs − TZ hrs  − DST hrs

1.211
UTC Corrected

UTC hrs 9.5 mod(UTCuncorr
hrs, 24)

12 UTC ° 142.5 15 × UTC hrs

13 temporary value 
aaa is the correction to be made if 
the local date differs from the date 
at Greenwich

aaa

0 a = 0

1.314 0 if (UTCuncorr
hrs

  <  0)   a = −1

15 0 if (UTCuncorr
hrs

  >  24) a = +1

16 temporary value bbb 8973.5 367 × YYYY − 730 531.5

1.6

17 temporary value ccc 3526 int({7. × int(YYYY + [MM + 9] / 12)} / 4)

18 temporary value ddd 63 int(275 × MM / 9) + DD
19 Days since Midnight D today

 days 0.39583 UTC hrs / 24
20 Days to 0:00 am since Epoch J2000 days 5510.5 aaa + bbb − ccc + ddd

21 Julian Centuries2000 T Jul Cent 0.15088 D2000
days / 365 25

22 Days to Now since Epoch D2000
days 5510.89583 J2000 days + D Today

 days

23
Greenwich Mean Sideral Time

GMST hrs 18.31737 
 (18.31737)

mod(6.697374558  
+ 0.065 709 824 419 08 × J2000 days 
+ 1.002 737 909 35 × UTC hrs  
+ 0.000 026 × T Jul Cent 2, 24)

1.4

24 GMST ° 274.76059 GMST hrs x 15
25

Sun’s Mean Longitude
MO ° 312.26059 mod{ (GMST ° − 180 ° − UTC °), 360 ° }

1.7
26 MO rad 5.44998 MO ° × π / 180
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Table 1 Part 2

Astronomical Facts
27

Perihelion Longitude
ω ° 283.19530 248.545 36 + 0.017 196 × YYYY

2.2
28 ω rad 4.94269 ω ° × π / 180 °
29 Eccentricity e 0.01670 0.017 585 − 0.438   × YYYY / 1,000,000 2.3

30
Obliquity

ε ° 23.43735
 (23.43758) 23.699 3  − 0.000 13  × YYYY

2.8
31 ε rad 0.40906 ε ° × π / 180 °

Solving Kepler’s Theorem & Sun’s True Longitude
32 Mean Anomaly M rad 0.50729 MO rad − ω rad 2.4
33 Eccentric Anomaly

E rad
0.51552 MO rad − sin(MO rad) / {cos(MO rad) − 1 / e} 2.7

34 2nd iteration for example only > 0.51552 E rad − [M − E rad + e × sin(E rad)] ÷ [e × cos(E rad)−1] -

35 True Anomaly ν rad 0.52381 2 × atan{tan(E rad / 2) × √ [(1 + e) / (1 − e)]} 2.8

36
Sun’s True Longitude

λ rad 5.46650 MO
 rad  + ω rad 

2.5
37 λ ° 313.20765

 (313.70149) λ rad × 180 ° / π 

Sun’s Declination, Right Ascension & the Equation of Time
38

Sun’s Declination
δ rad -0.29413 asin{sin(ε rad) × sin(λ rad)}

2.10
39 δ ° -16.85245

 (-16.85158 ) δ rad × 180 / π 

40

Sun’s Right Ascension

α rad -0.77365 atan2{ cos(ε rad) × sin(λ rad), cos(λ rad) }

2.1141 α ° 315.67321 mod(α rad × 180 / π , 360)

42 α hrs 21.04488
 (21.04468) α ° / 15

43

Equation of Time

EoT ° -3.41262 GMST ° − α ° - UTC ° + 180 ° 
1.944

EoT Astro °
-3.41262 if(EoTX° < −180 °) EoTAstro° = EoT ° + 360 °

45 -3.41262 if(EoTX° > +180 °) EoTAstro° = EoT ° − 360 °

46 EoT Gnomical ° 3.41262 − EoT Astro °
1.10

47 EoT Gnomical
 min 13.65049

 (13.63333) 4 × EoT Gnomical °

48
Longitude Correction

σ ° -6.28333 LON ° − TZ hrs × 15
1.11

49 σ min -38.84648 σ ° × 4
50 EoT Longitude Corrected EoTLocal

min -38.78381 EoT Gnomical
 min + σ min 1.12

The Sun’s Altitude & Azimuth

51 Observer’s True Hour  
Angle

h ° 342.80405
 (342.80778) mod{ (GMST ° + λt ° − α °),  360 }

2.12
52 h rad 5.98306 h ° × π / 180 °

53 Observer’s Latitude φ rad 0.66264 φ ° × π / 180 ° -

54
Sun’s Altitude

a rad 0.57333 asin{ sin(φ rad) × sin(δ rad)  
+ cos(φ rad) × cos(δ rad) × cos(h rad) } 2.16

55 a ° 32.84937 a rad  × 180 ° / π

56 Sun’s Zenith Distance z °
57.15063

(57.01570)
90 ° − a ° -

57

Sun’s Azimuth

sinA 0.33680 cos(δ rad) × sin(-h rad) / cos(a rad) 2.18

58 cosA -0.94158 ( sin(δ rad)  − sin(a rad) × sin(φ rad) )  
/ ( cos(a rad) × cos(φ rad)) 2.17

59 A rad 2.79808 atan2(sinA, cosA)
2.18

60 A ° 160.31807
 (160.32) mod(A rad  × 180 ° / π, 360 °)
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Functions that are used in the Table are...
•	 degrees  & radians function - may be replaced by × 

180 / π or by × π / 180
•	 trigonometric functions, sin, cos & tan. In most im-

plementations, these require input in radians: while 
the inverse functions asin, acos, atan output in radi-
ans.  If this is not the case, many of the degree/radian 
conversions below can be ignored - but not in Steps 
34-37, where radians must be used. Note that in tra-
ditional trigonometry asin was written as sin-1.

•	 atan2 function - this now exists in most program-
ming languages and returns the inverse tangent func-
tion in the correct quadrant, but requires both an x 
and y input parameter. Irritatingly, while most scien-
tific languages implement this as the more trigono-
metrically correct atan2(y,x), Microsoft Excel uses 
atan2(x,y).

•	 int function - this simply strips the fractional part 
of  a number away. Note, once more, that most sci-
entific languages implement this strictly for positive 
& negative number. Thus int(1.6) = 1 and int(-1.6) = 
-1, but once more Microsoft Excel differs: int(1.6) = 
1 but int(-1.6) = -2. This difference in not of interest 
below, since the int function operates only on posi-
tive numbers

•	 mod function. Particularly in angular calculations, 
this reduces a number to lie in a particular range 
(e.g. from 0° to 360°). Thus mod(370°,360°) = 10° = 
mod(-350°, 360°). Some languages make this func-
tion into an arithmetic operator: thus, in Python,   
370 % 360 = 10.

Accuracies	
In the calculations above, the only non-derived astro-
nomical parameters used are the... 

Table 1 Part 3

•	 length of the tropical year,
•	 eccentricity of the Earth’s orbit,
•	 obliquity of the Ecliptic,
•	 longitude of perihelion,
• 	 a single factor covering precession.
With this small coterie of values, it is perhaps remark-
able that a relatively simple (if long) approach can yield 
the accuracies stated over a period of 50 years. 
•	 GMST		  +/- 0.00 secs

•	 Right Ascension	 +/- 3 secs of time

•	 Declination		  +/- 18 secs of arc

•	 Equation of Time	 +/- 2.2 secs of time

•	 Altitude		  +/- 0.7 minutes of arc

•	 Azimuth		  +/- 1.3 minutes of arc

The stated accuracies have been derived with reference 
to 75,000 calculations using the 2012 edition of the US 
Naval Observatory’s MICA program see Ref. 4.
The  above calculations are more than sufficient for 
most gnomonists. However, if one wishes to pursue the 
calculations to a greater degree of accuracy. There are a 
number of factors that have to be considered
•	 The slowing of the year’s rotation, as seen in the in-

troduction of leap seconds in the calendar.
•	 The fact that solar dynamics use difference time and 

position reference frameworks. 
•	 The ‘correct’ dynamical approach calculates the 

Earth’s longitude for a particular instant of time. 
Sunlight reaches the Earth some 8 minutes later. 
During this time the Earth has moved somewhat. 
This effect is called Aberration.

•	 We have calculated the Sun’s longitude about the 
Ecliptic and assumed that its latitude is zero. This is 
not quite true. 

The Refraction Correction for the Sun’s Altitude - these are empirical formulae, see Ref. 2, they are not detailed in the text.

61 Input Temperature T °C 20
Input -

62 Input Atmospheric  
Pressure P millibars 1020

63

Refraction Correction R °

 0.02389 if (a ° > 15 °) R ° = 0.004 52 × tan(z ° × π / 180) 
× P millibars / (273 + T °C)

-64 n.a.

if (a ° < 15 °) R ° = P millibars  

× (0.1594 + 0.0196 × a° + 0.00002 × a° 2) 
/ {(273 + T °C)  
× (1 + 0.505 × a° + 0.084 5 × a° 2) } 

65 Sun’s Altitude Corrected aCorr° 32.82548 a° − R °

Approximate Sunrise & Sunset

66 Local Hr Ang, Sunrise/set hsr/ss° 76.32696 acos[−tan(φrad) . tan(δNoon
rad)] × 180 / π 2.20

67 Time of Sunrise hsr
hrs 7.55077 

 (7.48333) 12 − (h/ss° / 15) − EoTLocal 2.21

68 Time of Sunset hss
hrs 17.73486 

 (17.81667) 12 + (h/ss° / 15) − EoTLocal 2.22

69 Sun’s Azimuth at Sunrise Asr° 111.57578 (111) acos[sin(δNoon
rad)/cos(φrad)] × 180 / π

2.23
70 Sun’s Azimuth at Sunset Ass° 248.42422 (249) 360° − Asr°
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•	 We have ignored the “rattling and banging” of Nuta-
tion, which varies right ascension by up to 20 secs of arc 
and obliquity by up to 10 secs of arc. Nutation is caused 
by the gravitational pull of the Moon (& especially 
Jupiter) on the equatorial bulge of the Earth’s shape. 

•	 Our calculations relate to the centre of the Earth. Our 
position on the surface of the Earth varies the values 
of both Right Ascension & Declination.

If the reader wishes to delve deeper, Ref. 4 provides 
a useful outline and Ref. 2 provides the greatest depth 
achievable without access to serious professional as-
tronomical computing routines. The latter are available 
see Ref. 6, through the International Astronomical Union. 
However , their use by amateurs requires knowledge of 
Fortran or the “C” programming language.

Appendix 1 - Derivation of Kepler’s Law
Kepler’s Equation...

M rad  =  Erad −  e× sin Erad( )  ................................ Eqn. 2.25

is the result of his 1st and 2nd Laws of Planetary Motion
i	 The orbit of every planet is an ellipse with the Sun at 

one of the two foci.
ii	 A line joining a planet and the Sun sweeps out equal 

areas during equal intervals of time.
The means of developing this formula therefore de-
mands that we can calculate the area swept out in any 
given time, e.g. from Perihelion. This is the yellow 
shaded area in Fig. 9. Finding this area can be done by 
simple means using an old technique,see Ref. 7. The steps 
required are shown in Figs 16 to 22 below.
The next step shown in Fig. 23, not quite so easy to 
grasp, relates to the “equal areas during equal intervals 
of time”. This indicates that the area just calculated is 
proportional to the area swept out by the Mean Dynami-
cal Sun in the same period.
Finally, Fig. 24 shows how the true anomaly - ν - is re-
lated to the Eccentric Anomaly - E

Appendix 2 - Derivation of Newton Raphson 
approximation for Kepler’s Formula
Kepler’s Formula, Equn, 2.21, cannot be solved directly. 
So an iterative solution must be sought. The Newton-
Raphson method See Ref. 8 is an efficient method, provided 
that one can differentiate the function concerned. The 
method states that, if an estimation En is obtained, a bet-
ter estimation En+1 may be obtained, thus...

En=1 = En −
fn En( )
fn / En( )  ........................................ Eqn. 2.26

but , rewriting Eqn. 2.21 and differentiating...
fn(En ) = M − En + e× sin En( ) .........................Eqn. 2.27

fn / (En ) = e × cos En( )−1 ................................ Eqn. 2.28

To apply the Newton Raphson formula, we make a 
guess to start the process and then repeatedly put Eqns. 
40 & 41 into Eqn. 40...

O T F P
X

νE

Area of QPF = QPO − QFO
= E × a² − ½{a²×  cos(E) × sin(E)}
= a² × [E − ½{cos(E) × sin(E)}]

Earth

S True
Sun

Q

Eccentric
Sun

Fig. 19.	 Solving Kepler’s Formula - Step 3

O T F P
X

νE

a

Area of segment OQP = E × a²(E in radians)

Earth

S True
Sun

Q

Eccentric
Sun

Fig. 18.	 Solving Kepler’s Formula - Step 2

O T F P
X

νE

a × cos(E)

a × sin(E)

a

Area of triangle OQF = ½ a² × cos(E) × sin(E)

Earth

S True
Sun

Q

Eccentric
Sun

Fig. 17.	 Solving Kepler’s Formula - Step 1
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Fig. 23.	 Step 7 - see overleaf

E1 = a guess

E2 = E1 − M − E1 + e× sin E1( )( ) e× cos E1( )−1( )
E3 = E2 − M − E2 + e× sin E2( )( ) e× cos E2( )−1( )
E4 = E3 − M − E3 + e× sin E3( )( ) e× cos E3( )−1( )

........... Eqn. 2.29

and we repeat the process until there is negligible differ-
ence between En and En+1

We make our first guess. as E1 = M, then...
E2 = M − M −M + e× sin M( )( ) e× cos M( )−1( )

= M − e× sin M( )( ) e× cos M( )−1( )............. Eqn. 2.30

Since the eccentricity is so small, it transpires that this 
is the only iteration needed ! It is left to the reader to 
show that, for any value of Mrad between 0 and 2π, the 
difference between E2 and E3 is less than +/- .5 seconds of arc, 
which is sufficiently precise for that which is required 
by the dialist. The difference between E3 and E4 is ef-
fectively zero.

Notes
1.	 Equations for Eccentricity, Obliquity & Longitude of Perihe-

lion were adapted from the formulae quoted in the Astronomi-
cal Almanac Ref. 10. 

2.	 If one consults the Astronomical Almanacs over the years, the 
reader will note that the moment of Perihelion varies back & 
forth in an apparently random fashion between Jan 2 and Jan 
5th as shown below...

	

2013 Jan 2, 06:38 2017 Jan 4, 16:18
2014 Jan 4, 13:59 2018 Jan 3, 07:35
2015 Jan 4, 08:36 2019 Jan 3, 07:20
2016 Jan 3, 00:49 2020 Jan 5, 09:48

	 The table given the moment the centre of the Earth is closest 
to the Sun. The mean value of Perihelion - ω, as given in the 
equations presented in this paper, is the moment when the cen-
tre of gravity of the Earth/Moon combination is closest to the 
Sun. This combined mass has its centre of gravity some 1700 
kms below the Earth’s surface - about ¼ of the way towards the 
Earth’s centre. As far as Keplarian physics is concerned, the 

O T F P
X

νE

a × e a × cos(E) - a × e
a × cos(E)

a × sin(E)

a × sin(E) × b/a

a

Area of SFT = ½[(a × cos(E) - a × e] × [b × sin(E)]
= ½ a × b × sin(E) × [cos(E) − e]

Earth

S True
Sun

Q

Eccentric
Sun

Fig. 21.	 Solving Kepler’s Formula - Step 5

O T F P
X

νE

Area of SPF = QPF × b/a
             because, for all points on an ellipse, SF = QF × b/a

= ½ a × b × [E − cos(E) × sin(E)]

Earth

S True
Sun

Q

Eccentric
Sun

Fig. 20.	 Solving Kepler’s Formula - Step 4

O T F P
X

νE

Area of SPT = SFT + SPF
=     

    + 
=      

½ a × b × sin(E) × [cos(E) − e]
½ a × b × [E − cos(E) × sin(E)]
½ a × b × [E − e × sin(E)]

Earth

S True
Sun

Q

Eccentric
Sun

Fig. 22.	 Solving Kepler’s Formula - Step 6.  
The yellow segment is the area swept out by the True Sun

O T F P
X

νE

a × cos(E) − a × e

a × sin(E) × b/a
= a × sin(E) × √(1 − e²)

tan ν = √(1 − e²) × sin(E) / [cos(E) − e]

a ×
 [1

 −
 e 

 ×
 co

s(E
)]

Earth

S True
Sun

Q

Eccentric
Sun

Fig. 24.	 Solving Kepler’s Formula - Step 8
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calculations above relate to the unequal dumb-bell that is the 
Earth/Moon combination.

3.	 Eqn. 20 requires the atan2 function to provide an answer in the 
correct quadrant, (ν must be in the same quadrant as E). An 
alternate formulae is often published, which avoids the use of 
atan2, through the use of the trigonometric half-angle formu-
lae...

	
tan ν

2( ) = tan E
2( )× 1+ e( )

1− e( )
⎛
⎝⎜

⎞
⎠⎟ .......... Eqn. 2.31

	 The two are functionally identical. This formula can, with some 
cumbersome trigonometry, be derived from Eqn. 20.

4.	 Ref. 1 - below - gives the formula as... 
2 × EOT =Length of afternoon − Length of morning

........... Eqn. 2.32

5.	
Spike Milligan...

	 What’s the Time, Eccles?
	 Wait, I’ve got it written down on a piece of paper...  

... Eight o’clock.
	 Where did you get that?
	 I asked a man what the time was and he wrote it down for me. 

It’s very nice because when people ask me the time, I can tell 
’em because I’ve got it written down on a piece of paper.

	 What do you do when it’s not eight o’clock?
	 I don’t look.
	 So how do you know when it is eight o’clock?
	 I’ve got it written down on a piece of paper......

Kevin Karney, 
Freedom Cottage, 
Llandogo,
Monmouth NP25 4TP,
Wales.
Kevin@Karney.com
September 2014

References
The reader is referred to the general References Part 1 of this series.

1.	 Wikipedia : Spherical Trigonometry 
http://en.wikipedia.org/wiki/Spherical_trigonometry

2.	 Jean Meeus: Astronomical Algorithms: Willman-Bell, Rich-
mond (1998).

3.	 C.W.C. Barlow & G.H. Bryan: Elementary Mathematical As-
tronomy: 2nd Edn, Clive & Co, London (1893) see page 124.

4.	 Multiyear Interactive Computer Almanac - 1800 - 2050: US 
Naval Observatory: (2012). This is a high precision astronomi-
cal program, that (e.g.) provides EoT to an accuracy of 0.1 
second.

5.	 Peter Duffet-Smith: Practical Astronomy with your Calculator: 
Cambridge Univ. Press, Cambridge (1988). 

6.	 Standards of Fundamental Astronomy : IAU SOFA :  
http://www.iausofa.org

7.	 Admiralty Manual of Navigation - Volume III: Her Majesty’s 
Stationery Office (1958).

8.	 Wikipedia : Newton’s Method 
http://en.wikipedia.org/wiki/Newton%27s_method

9.	 http://www.sundialsoc.org.uk/Glossary/equations/equations-
new.php as of March 2013

10.	The US Nautical Almanac Office & UK Hydrographic Office: 
The Astronomical Almanac for the Year 2009: London, the Sta-
tionary Office 

1s
t P

oi
nt

 o
f A

rie
s

ca
 2

1s
t M

ar
ch

Perihelion
ca 3rd JanuaryO T F P

X
ν ME

E
ν
M

= Eccentric Anomoly
= True Anomaly
= Mean Anomaly

By Kepler’s Law, at the same moment in time,
Area SPT is proportional to Area of Ellipse and …
… Area RXT is proportional to Area of Circle
thus [½ M . r²] / π r²   = Area SPT / [ π . a . b]
thus [½ M . r²] / π r²   = ½ a . b . [E - e . sin(E)] / [π . a . b]
thus M  = E - e . sin(E) … Kepler’s Formula
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Basic Solar Positional Astronomy 
Part 3: Fourier Derived Formulae 

KEVIN KARNEY

Preamble
If the above routines are too involved for easy use, one 
may always use Fourier deduced trigonometric series. 
This study was triggered by the author’s interest in 
derivation and quality of the Equation of Time formula 
given in the BSS Glossary Ref 1

Ea
mins =

−0.00000.75...
−0.001868cos ω( ) + 0.032077sin ω( )...
+0.014165cos 2ω( ) + 0.040849sin 2ω( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
× 720π

ω = 2πnd 365
nd = 1at noon on 1 Jan, 32 on 1 Feb, etc. ............Eqn 3.1

If during leap years, 366 replaces 365 in the second line, 
this formula yields an accuracy of +48 & -36secs of time 
over the first 50 years of this century. The method de-
scribed hereafter is thorough and produces results with 
far greater precision - for EoT, Declination and Right 
Ascension - than is generally required in dialing. For 
many, more simple formula will suffice: these are also 
deduced - providing some improvement over those pro-
vide in the Glossary.

The Fourier Approach
Any ‘signal’ that repeats with time (for example the 
Equation of Time, or Declination) can be approximated 
by the sum of a number of pure sine (or cosine) curves. 
The theory states that an approximation of a function 
can be made...

f x( ) ≈ Av + An
n=1

N

∑ × sin n × θ rad +ϕn
rad( )( ) .............Equ 3.2

•	 Av	= the average of the signal over an integer num-
ber of its periods

•	 n 	 = harmonic number,
•	 A	 = amplitude of a particular harmonic
•	 θ 	 = phase of that particular harmonic, 

(e.g. on 20th day of the year,  
θ 	 = 2 x π x 20day/365day),

•	 φ	 =  offset of the harmonic’s zero point from start 
of computations,  
(e.g. offset of vernal  equinox on 21 Mar from Jan 1  
φ	 ≈ 90day/365day x 2 x π) ,

See Note 1 for alternative versions of Equ 3.2
The accuracy obtained by this approximation method 
depends on the number of harmonics that are chosen. 
Bretagnon and Simon Ref  2 used 1080 terms to model the 
Sun’s Longitude. Even, with just 6 terms, a saw tooth 
signal can be quite well modelled. See Fig 1. The meth-
od is widely used in many fields of industry - electron-
ics, radio & seismic processing, to name but a few.

A simple means of extracting the harmonic amplitudes 
and offsets from a ‘signal’ is illustrated in the Appendix. 
This method works very well if the duration of one re-
peating cycle is known - a 365 calendar year does not do 
well for most solar parameters, whereas a 365.25 cycle 
does better since it is closer to the length of a tropical 
year       
However clever the Fourier approach may be in analy-
sis, it does not cater well for the slow secular changes 
that are common in astronomy. As far as we are con-
cerned, these relate to precession, the value of eccen-
tricity, obliquity and perihelion longitude. These may 
by cyclical over the very long-term - but over our life 
time, their changes are effectively linear but small.
To overcome this problem, the following steps were fol-
lowed...
1	 input (EoT, Decl & RA) was calculated from MI-

CARef 3 every 6 hours over a period of some 50 years 
from noon on 1st Jan 2000 to midnight on 1st Jan 
2051 - which is exactly 50 x 365.25 days

2. for each of the three input types, the values where 
divided in 50 x 365.25-day cycles, each containing 
1461 values. 

f θ( ) = 1
1
× sin 1×θ( ) + 1

2
× sin 2 ×θ( ) + 1

3
× sin 3×θ( ) + 1

4
× sin 4 ×θ( ) + 1

5
× sin 5 ×θ( ) + 1

6
× sin 6 ×θ( )

f θ( ) = 1
1
× sin 1×θ( ) + 1

2
× sin 2 ×θ( ) + 1

3
× sin 3×θ( ) + ...

... 1
4
× sin 4 ×θ( ) + 1

5
× sin 5 ×θ( ) + 1

6
× sin 6 ×θ( )

Fig. 1. This shows how even a linear periodic shape can be 
simulated by the  sum of trigonometric components. More 
components, better fit.
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Fig. 2. The first 6 EoT harmonic amplitudes
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Equation of Time
The Equation of Time may be estimated thus:
Amp1

mins = 7.36303 − Cycle× 0.00009
Amp2

mins = 9.92465 − Cycle× 0.00014
ϕ1

rad = 3.07892 − Cycle× 0.00019
ϕ2

rad = -1.38995+ Cycle× 0.00013
EoT1

mins = Amp1 × sin 1× θ + ϕ1( )( )
EoT2

mins = Amp2 × sin 2 × θ + ϕ2( )( )
EoT3

mins = 0.31730 × sin 3× θ − 0.94686( )( )
EoT4

mins = 0.21922 × sin 4 × θ − 0.60716( )( )
EoT mins = 0.00526 + EoT1  +  EoT2  +  EoT3  +  EoT4

...........Eqn 3.4

This yields the Equation of Time to +/- 3 seconds of time from 
2000 to 2050. Dropping the fixed and the fourth term 
(EoT4) reduces the accuracy to +/- 16 seconds of time.
Additional simplification of the above routine yields..
EoT mins = 7.36 × sin θ + 3.08( ) + ...

9.92 × sin 2 ×θ − 2.78( ) ........................Eqn. 3.5

This has errors of +/- 34 seconds of time, which makes it ad-
equate for most gnomonical purposes.
1st harmonic overtone. The amplitude factor of 7.3630min 
in the term EoT1 primarily represents the eccentricity 
effect, which cycles once per year, with perihelion as 
origin. The offset angle of ...
3.07892rad = 176° = 176 x 365.25/360days = 179days which 
is the time of mean aphelion after 1st Jan.
2nd harmonic overtone. The amplitude factor of 
9.92465min in the term EoT2 represents the major com-
ponent of the obliquity effect, which cycles twice per 
year, with the equinox as origin. The offset angle of ...
1.38995rad = 80° = 80 x 365.25/360days = 81days which is 
the time of mean vernal equinox after 1st Jan.
3rd and 4th harmonic overtones. These are mostly due 
to the fact that the obliquity effect is essentially tangen-
tial rather than sinusoidal (see Equ 28)
The error bands for the 4, 3 & 2 harmonic estimations 
are given in Fig 4.

Declination
The analysis for Declination was more complex,. Fig 5 
shows the plot of 1st harmonic amplitude against Cycle.
This shows a linear downward trend, together with a 
sinusoidal shape. To investigate this harmonic, first, the 
linear trend was extracted, leaving a normal sine curve.  
Second, this sine curve which was subject to another 
Fourier analysis, which showed an interesting 18-year 
recurrence, which means that it might be related to the 
Saros eclipse cycle. In turn, this suggest that it repre-
sents one of the lunar nutational effects, varying the 

3	 for each of the 50 cycle, the first 6 harmonics were 
calculated using exactly the method described in Ap-
pendix 1

4	 a Fourier approximation of the input was back-cal-
culated using Equ 3.1 and compared with the input. 
In all cases, the last two harmonics provided little 
more than noise, so were discarded  . See Fig 2

5	 for the larger amplitude harmonics, the change in 
amplitude and offset was analysed over the 50 cycles 
and the value An and φn in Eqn 3.1 were replaced 
by the equation of their trend lines . For example 
see Fig 3. This shows how the second EoT harmonic 
amplitude varies over the 50 cycles and its linear 
trendline.

The Phase Angle & Cycle
All the formula presented need to have the date/time 
converted into a phase angle - θ. Each uses the Days 
since the 2000 Epoch (D2000

days) as input. These can be 
easily found using the routines down to lines 10-20 of 
Table 1. Thereafter the cyclical angle θrad is calculated 
thus...
bbb =  367 ×  YYYY  −  730531.5 
ccc =  − int 7 × int YYYY + MM + 9( ) /12( )( ) /  4( )  
ddd = int 275 ×MM / 9( )  +  DD
Dtoday = HH +MM / 60( )  /  24

D2000
days = bbb + cccc + ddd + Dtoday

Cycle = int D2000
days  /  365.25( )

θrad = 0.017202 4 ×  (D2000
days  −  365.25 ×  Cycle)

............Equ 3.3
Cycle & θrad is applied in each of the routines below.

Fig. 3. The trend in the EoT 2nd harmonic amplitude over 
50 years
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Fig. 4. 50 year trend in the EoT 2nd harmonic amplitude.
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Earth’s obliquity - and hence the declination. This is to 
be expected.
The Declination of the Sun may be estimated thus:
Amp1

deg =  23.2639 −  Cycle ×  0.000131... 
...+  0.0024 ×  sin(Cycle ×  0.335 − 0.4)

ϕ1
rad =  −1.38819 +  Cycle ×  0.000135

δ1
deg   =  Amp1 × sin 1× θ rad  +  ϕ1

rad( )( )
δ 2
deg =  0.380897 × sin 2 × θ rad − 0.720483( )( )

δ 3
deg  =  0.171178 × sin 3× θ rad −  0.347175( )( )

δ 4
deg  =  0.008067 × sin 4 × θ rad −  0.272216( )( )

δ deg =  0.37657 +  δ1  +  δ 2  +  δ 3 +  δ 4 ............... Equ 3.6

In the formula above, the first line of the equation shows 
the linear trend of Amp1: the second line, the sinusoidal 
trend.
This yields Declination to +/- 30 seconds of arc from 2000 
to 2050. Dropping the fourth term (δ4) reduces the ac-
curacy to +/- 52 seconds of arc. Dropping the third term (δ3) 
reduces the accuracy to +/- 11 minutes of arc.

Additional simplification of the above routine yields..
δ deg = 0.377 +  23.264 ×  sin(θ −1.388) ...

...+  0.381 ×  sin 2 ×θ −1.44( ) ..................Eqn 3.7

This has errors of +/- 21 minutes of arc, which makes it ad-
equate for most gnomonical purposes.

Right Ascension
Eqn 1.9, from Part 1 of this series, can be rearranged as 
follows...
α hrs= GMST hrs −UTChrs +12hrs + EoTgnomonical

hrs ...........Eqn. 3.8

GMST, to the level of the accuracy of this study, is lin-
ear. Thus GMST - UTC +12 is also linear. From which, 
we can deduce that the Right Ascension of the Sun may 
be estimated by...

α hrs =
18.697 4 + 3.8198 × θ  

+ 24.00051 × Cycle 
− EoT Gnomonical

mins / 60

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

mod24......... Eqn 3.9

This yields the Sun’s Right Ascension to +/- 4 seconds of 

time from 2000 to 2050, if 4 harmonic terms are used for 
EoT. This reduces to +/-17 secs of time is 3 harmonics 
are used, and to +/1 35 seconds of time if equation 3.5 
is used  

Appendix
Fig 6 is a simple spreadsheet example, just looking at 
25 Date/EoT pairs spread evenly every 14.6 (= 365 / 25) 
days over a year. The input was taken from the MICA 
program Ref 3. Just the first and second harmonics were 
calculated and the output was generated as the sum of 
those two components, together the average value.
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Fig. 5. The trend in the Declination 1st harmonic amplitude 
over 50 years

Harmonic
n 1 Harmonic

n 2

Date & Time
Equation 
of Time
mins

Step
Phase
 θ 

radians
n x θ EoT 

x sin(n x θ)
EoT 

x cos(n x θ)

H1 = 
1st Harmonic 
Component =

A x sin{n x (θ + φ)}

n x θ EoT 
x sin(n x θ)

EoT 
x cos(n x θ)

H2 = 
2nd Harmonic 
Component =

A x sin{n x (θ + φ)}

Fourier EoT 
= Av + 
H1 + H2

Error
secs

01-Jan-2015 12:00 3.4250 0 0.0000 0.0000 0.0000 3.4250 -0.4679 0.0000 0.0000 3.4250 3.5893 3.1117 19
16-Jan-2015 02:24 9.5000 1 0.2513 0.2513 2.3626 9.2015 1.3712 0.5027 4.5767 8.3249 7.6035 8.9651 32
30-Jan-2015 16:48 13.2533 2 0.5027 0.5027 6.3848 11.6140 3.1242 1.0053 11.1902 7.1015 9.7367 12.8512 24
14-Feb-2015 07:12 14.1500 3 0.7540 0.7540 9.6863 10.3149 4.6808 1.5080 14.1221 0.8885 9.4612 14.1324 1
28-Feb-2015 21:36 12.4917 4 1.0053 1.0053 10.5471 6.6934 5.9434 2.0106 11.3028 -5.3187 6.8451 12.7788 -17
15-Mar-2015 12:00 8.9833 5 1.2566 1.2566 8.5437 2.7760 6.8325 2.5133 5.2803 -7.2677 2.5356 9.3585 -23
30-Mar-2015 02:24 4.6717 6 1.5080 1.5080 4.6624 0.2933 7.2923 3.0159 0.5855 -4.6348 -2.4012 4.8815 -13
13-Apr-2015 16:48 0.5417 7 1.7593 1.7593 0.5321 -0.1015 7.2939 3.5186 -0.1994 -0.5036 -6.7439 0.5403 0
28-Apr-2015 07:12 -2.4367 8 2.0106 2.0106 -2.2048 1.0375 6.8372 4.0212 1.8775 1.5532 -9.4183 -2.5908 9
12-May-2015 21:36 -3.6650 9 2.2619 2.2619 -2.8239 2.3362 5.9509 4.5239 3.6001 0.6868 -9.7628 -3.8215 9
27-May-2015 12:00 -2.8833 10 2.5133 2.5133 -1.6948 2.3327 4.6907 5.0265 2.7422 -0.8910 -7.6920 -3.0110 8
11-Jun-2015 02:24 -0.5067 11 2.7646 2.7646 -0.1865 0.4711 3.1357 5.5292 0.3468 -0.3693 -3.7184 -0.5923 5
25-Jun-2015 16:48 2.6283 12 3.0159 3.0159 0.3294 -2.6076 1.3837 6.0319 -0.6536 2.5458 1.1752 2.5492 5
10-Jul-2015 07:12 5.2967 13 3.2673 3.2673 -0.6638 -5.2549 -0.4552 6.5345 1.3172 5.1303 5.7780 5.3131 -1
24-Jul-2015 21:36 6.5217 14 3.5186 3.5186 -2.4008 -6.0637 -2.2655 7.0372 4.4644 4.7541 8.9514 6.6762 -9
08-Aug-2015 12:00 5.6733 15 3.7699 3.7699 -3.3347 -4.5898 -3.9335 7.5398 5.3957 1.7532 9.9103 5.9671 -18
23-Aug-2015 02:24 2.8117 16 4.0212 4.0212 -2.1664 -1.7922 -5.3544 8.0425 2.7619 -0.5269 8.4176 3.0536 -15
06-Sep-2015 16:48 -1.6233 17 4.2726 4.2726 1.4688 0.6912 -6.4387 8.5451 -1.2508 1.0348 4.8425 -1.6059 -1
21-Sep-2015 07:12 -6.7517 18 4.5239 4.5239 6.6321 1.2651 -7.1186 9.0478 -2.4855 6.2775 0.0694 -7.0588 18
05-Oct-2015 21:36 -11.6267 19 4.7752 4.7752 11.6037 -0.7300 -7.3511 9.5504 1.4572 11.5350 -4.7209 -12.0816 27
20-Oct-2015 12:00 -15.1483 20 5.0265 5.0265 14.4069 -4.6811 -7.1217 10.0531 8.9040 12.2553 -8.3432 -15.4746 20
04-Nov-2015 02:24 -16.4417 21 5.2779 5.2779 13.8822 -8.8099 -6.4449 10.5558 14.8769 7.0005 -9.9016 -16.3562 -5
18-Nov-2015 16:48 -14.8467 22 5.5292 5.5292 10.1632 -10.8228 -5.3631 11.0584 14.8174 -0.9322 -9.0105 -14.3832 -28
03-Dec-2015 07:12 -10.4117 23 5.7805 5.7805 5.0159 -9.1238 -3.9443 11.5611 8.7909 -5.5788 -5.8902 -9.8442 -34
17-Dec-2015 21:36 -3.8483 24 6.0319 6.0319 0.9570 -3.7274 -2.2777 12.0637 1.8539 -3.3723 -1.3128 -3.6002 -15

Av =
Average 

of 
Column 
above

p = 2 x Average 
of Column above

q = 2 x Average 
of Column above

p = 2 x Average 
of Column above

q = 2 x Average 
of Column above

-0.0097 7.3362 -0.4682 9.2539 3.5897

Harmonic  
Amplitude

A = √
(p x p + q x q)

Harmonic
Phase
φ =

atan2(p , q) / n

Harmonic  
Amplitude

A =
√(p x p + q x q)

Harmonic
Phase
φ =

atan2(p , q) / n

7.3511 -0.0637 9.9258 0.1850

INPUT FIRST HARMONIC SECOND HARMONIC OUTPUT

Fig. 6. Example Spreadsheet. Follow the blue numbers. The yellow boxes show the formulae to be used in each column.
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Fig 7 compares the black line, generated by 2 harmon-
ics calculated from just those 25 points marked with the 
‘x’s. The fit is close but not visually exact. Fig 8 shows 
the very close match achieved by using 365 input values 
to generate four harmonics.

Note 1
Fourier series can be quoted as a sum of sine &/or 
cosine curves thus... 

an × sin n ×θ + b( )
1

N

∑

an × cos n ×θ − b /( )
1

N

∑ where b / = π 2 − b

q × sin n ×θ( ) + r × cos n ×θ( )
1

N

∑
                                where q = an × cos b( )  & r = an × sin b( )

....................Eqn 3.10

All are trigonometrically the same

Note 2
The following Microsoft Excel function macros can be 
copied into a module in Excel’s Visual Basic Editor. 
Then, on a spreadsheet, they can be called by filling in 
a formula, such as
	 =EoT(YYYY,MM,DD,HH,MM,SS) 
	 =Decl(YYYY,MM,DD,HH,MM,SS) 
	 =RA(YYYY,MM,DD,HH,MM,SS) 
YYYY = Year, MM = Month, etc. Note that Date and 
Time must be UTC.
To avoid errors in copying these out, they can be found 
as text files at Ref 4

 
‘ ****************************************
‘ EoT Macro
Function EoT(The_Year, The_Month, The_Day, The_
Hour, The_Minute, The_Second)
bbb = 367 * The_Year - 730531.5
ccc = Int((7# * Int(The_Year + (The_Month + 9) / 
12)) / 4)
ddd = Int(275 * The_Month / 9) + The_Day
D2000 = bbb - ccc + ddd + (The_Hour + The_Minute / 
60 + The_Second / 3600) / 24
Cycle = Int(D2000 / 365.25)

Theta = 0.0172024 * (D2000 - 365.25 * Cycle)
Average = 0.00526
Amp1 = 7.36303 - Cycle * 9e-05
Amp2 = 9.92465 - Cycle * 0.00014
Phi1 = 3.07892 + Cycle * -0.00019
Phi2 = -1.38995 + Cycle * 0.00013

EoT1 = Amp1 * Sin(1 * (Theta + Phi1))
EoT2 = Amp2 * Sin(2 * (Theta + Phi2))
EoT3 = 0.3173 * Sin(3 * (Theta - 0.94686))
EoT4 = 0.21922 * Sin(4 * (Theta - 0.60716))

EoT = Average + EoT1 + EoT2 + EoT3 + EoT4
End Function

‘ ****************************************
‘ Declination Macro
Function Decl(The_Year, The_Month, The_Day, 
The_Hour, The_Minute, The_Second)
bbb = 367 * The_Year - 730531.5
ccc = Int((7# * Int(The_Year + (The_Month + 9) 
/ 12)) / 4)
ddd = Int(275 * The_Month / 9) + The_Day
D2000 = bbb - ccc + ddd + (The_Hour + The_Min-
ute / 60 + The_Second / 3600) / 24
Cycle = Int(D2000 / 365.25)
Theta = 0.0172024 * (D2000 - 365.25 * Cycle)
Amp1 = 23.2639 - Cycle * 0.000131 + 0.0024 * Sin(Cycle 
* 0.335103 - 0.4)
Amp1 = 23.2639 - Cycle * 0.000131 + 0.0024 * Sin(Cycle 
* 0.335 - 0.4)
Phi1 = -1.38819 + Cycle * 0.000135
Decl1 = Amp1 * Sin(1 * (Theta + Phi1))
Decl2 = 0.380897 * Sin(2 * (Theta - 0.720483))
Decl3 = 0.171178 * Sin(3 * (Theta - 0.347175))
Decl4 = 0.008067 * Sin(4 * (Theta - 0.272216))
Decl = 0.37657 + Decl1 + Decl2 + Decl3 + Decl4
End Function

‘ ****************************************
‘ Right Ascension Function
Function RA(The_Year, The_Month, The_Day, The_Hour, 
The_Minute, The_Second)
bbb = 367 * The_Year - 730531.5
ccc = Int((7# * Int(The_Year + (The_Month + 9) / 
12)) / 4)
ddd = Int(275 * The_Month / 9) + The_Day
D2000 = bbb - ccc + ddd + (The_Hour + The_Minute / 
60 + The_Second / 3600) / 24
Cycle = Int(D2000 / 365.25)
Theta = 0.0172024 * (D2000 - 365.25 * Cycle)
Average = 0.00526
Amp1 = 7.36303 - Cycle * 9e-05
Amp2 = 9.92465 - Cycle * 0.00014
Phi1 = 3.07892 + Cycle * -0.00019
Phi2 = -1.38995 + Cycle * 0.00013
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Fig. 7. The black line shows the EoT generated for 25 
‘correct’points. The pink line shows 365 ‘correct’ points. 
Note how close the black line follows the pink curve.
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Fig. 8.  As more input points and more harmonics are used, 
the estimation gets better and better.
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EoT1 = Amp1 * Sin(1 * (Theta + Phi1))
EoT2 = Amp2 * Sin(2 * (Theta + Phi2))
EoT3 = 0.3173 * Sin(3 * (Theta - 0.94686))
EoT4 = 0.21922 * Sin(4 * (Theta - 0.60716))

EOT_hrs = (Average + EoT1 + EoT2 + EoT3 + EoT4) / 60
RA = (18.6974 + 3.8198 * Theta + 24.00051 * Cycle 
- EOT_hrs)
RA = RA - (24 * (RA \ 24))
If RA < 0 Then RA = RA + 24
End Function
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